vllm.v1.attention.backends.flex_attention
Attention layer with FlashAttention.
create_block_mask_compiled module-attribute
¶
create_block_mask_compiled = compile(
create_block_mask,
fullgraph=True,
mode="reduce-overhead",
)
flex_attention_compiled module-attribute
¶
flex_attention_compiled = compile(
flex_attention, fullgraph=True
)
FlexAttentionBackend ¶
Bases: AttentionBackend
Source code in vllm/v1/attention/backends/flex_attention.py
get_builder_cls staticmethod
¶
get_builder_cls() -> type[FlexAttentionMetadataBuilder]
get_impl_cls staticmethod
¶
get_impl_cls() -> type[FlexAttentionImpl]
get_kv_cache_shape staticmethod
¶
get_metadata_cls staticmethod
¶
get_metadata_cls() -> type[AttentionMetadata]
get_supported_dtypes classmethod
¶
FlexAttentionImpl ¶
Bases: AttentionImpl
Source code in vllm/v1/attention/backends/flex_attention.py
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
|
__init__ ¶
__init__(
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
logits_soft_cap: Optional[float] = None,
attn_type: AttentionType = DECODER,
kv_sharing_target_layer_name: Optional[str] = None,
) -> None
Source code in vllm/v1/attention/backends/flex_attention.py
forward ¶
forward(
layer: Module,
query: Tensor,
key: Tensor,
value: Tensor,
kv_cache: Tensor,
attn_metadata: FlexAttentionMetadata,
output: Optional[Tensor] = None,
output_scale: Optional[Tensor] = None,
) -> Tensor
Forward pass with FLexAttention.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query | Tensor | shape = [num_tokens, num_heads, head_size] | required |
key | Tensor | shape = [num_tokens, num_kv_heads, head_size] | required |
value | Tensor | shape = [num_tokens, num_kv_heads, head_size] | required |
attn_metadata | FlexAttentionMetadata | Metadata for attention. | required |
Returns: shape = [num_tokens, num_heads * head_size]
Source code in vllm/v1/attention/backends/flex_attention.py
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
|
view_as_4d staticmethod
¶
FlexAttentionMetadata dataclass
¶
Source code in vllm/v1/attention/backends/flex_attention.py
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
|
logical_mask_mod class-attribute
instance-attribute
¶
logical_mask_mod: _mask_mod_signature = causal_mask_mod
__init__ ¶
__init__(
causal: bool,
num_actual_tokens: int,
max_query_len: int,
query_start_loc: Tensor,
max_seq_len: int,
seq_lens: Tensor,
block_table: Tensor,
slot_mapping: Tensor,
use_cascade: bool,
common_prefix_len: int,
cu_prefix_query_lens: Optional[Tensor],
prefix_kv_lens: Optional[Tensor],
suffix_kv_lens: Optional[Tensor],
total_cache_tokens: int,
block_size: int,
max_possible_sequence_length: int,
num_reqs: int,
physical_to_logical: Tensor,
decode_offset: Tensor,
num_input_tokens: int = 0,
block_mask: Optional[BlockMask] = None,
score_mod: Optional[_score_mod_signature] = None,
logical_mask_mod: _mask_mod_signature = causal_mask_mod,
) -> None
__post_init__ ¶
Source code in vllm/v1/attention/backends/flex_attention.py
build_block_mask ¶
build_block_mask() -> BlockMask
Source code in vllm/v1/attention/backends/flex_attention.py
get_bidirectional_mask_mod ¶
Creates the encoder mask_mod function for FlexAttention.
Since the encoder bidirectional attention doesn't run with KV cache, this function creates a mask based on the packed query sequences.
Source code in vllm/v1/attention/backends/flex_attention.py
get_causal_mask_mod ¶
Creates the mask_mod function for FlexAttention.
This function creates the combined mask mod function that handles
- The paged attention block mapping
- The mapping from packed query sequences to logical query entries
It also by defaults adds the decoding offset to the query indices. With this info we create the "logical" indices that are passed to mask_mod functions. This allows mask mod functions to be agnostic to layout of the query and key/value tensors.
TODO is_within_lower_bound: do sequences start on block_boundaries?
Source code in vllm/v1/attention/backends/flex_attention.py
FlexAttentionMetadataBuilder ¶
Bases: AttentionMetadataBuilder[FlexAttentionMetadata]
Source code in vllm/v1/attention/backends/flex_attention.py
__init__ ¶
__init__(
kv_cache_spec: AttentionSpec,
layer_names: list[str],
vllm_config: VllmConfig,
device: device,
)
Source code in vllm/v1/attention/backends/flex_attention.py
build ¶
build(
common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata,
fast_build: bool = False,
) -> FlexAttentionMetadata
Source code in vllm/v1/attention/backends/flex_attention.py
_offsets_to_doc_ids_tensor ¶
Source code in vllm/v1/attention/backends/flex_attention.py
causal_mask_mod ¶
physical_to_logical_mapping ¶
Creates an inverse mapping from physical block locations to logical indices.
The original block_table maps from logical blocks to physical locations:
Logical to Physical (Original block_table): ┌───────────────────────────────────────────┐ │ Request 0: │ │ │ │ Logical Blocks: 0 1 2 3 4 5 6 7 │ │ │ │ │ │ │ │ │ │ │ │ v v v v v v v v │ │ Physical Blocks: 3 5 1 7 4 2 0 6 │ └───────────────────────────────────────────┘
This function creates the inverse mapping:
Physical to Logical (Inverse mapping): ┌───────────────────────────────────────────┐ │ Request 0: │ │ │ │ Physical Blocks: 0 1 2 3 4 5 6 7 │ │ │ │ │ │ │ │ │ │ │ │ v v v v v v v v │ │ Logical Blocks: 6 2 5 0 4 1 7 3 │ └───────────────────────────────────────────┘
If multiple logical blocks map to the same physical block, this function returns the first (minimum) logical block index.
If a physical block is not mapped to by any logical block, its value in the result will be -1.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
block_table | Tensor | Tensor of shape [max_reqs, max_num_blocks] mapping logical blocks to physical locations | required |
Returns:
Type | Description |
---|---|
Tensor | A tensor of shape [max_reqs, max_physical_block] |