Skip to content

vllm.entrypoints.openai.serving_responses

logger module-attribute

logger = init_logger(__name__)

OpenAIServingResponses

Bases: OpenAIServing

Source code in vllm/entrypoints/openai/serving_responses.py
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
class OpenAIServingResponses(OpenAIServing):

    def __init__(
        self,
        engine_client: EngineClient,
        model_config: ModelConfig,
        models: OpenAIServingModels,
        *,
        request_logger: Optional[RequestLogger],
        chat_template: Optional[str],
        chat_template_content_format: ChatTemplateContentFormatOption,
        return_tokens_as_token_ids: bool = False,
        reasoning_parser: str = "",
        enable_auto_tools: bool = False,
        tool_parser: Optional[str] = None,
        tool_server: Optional[ToolServer] = None,
        enable_prompt_tokens_details: bool = False,
        enable_force_include_usage: bool = False,
        enable_log_outputs: bool = False,
    ) -> None:
        super().__init__(
            engine_client=engine_client,
            model_config=model_config,
            models=models,
            request_logger=request_logger,
            return_tokens_as_token_ids=return_tokens_as_token_ids,
            enable_force_include_usage=enable_force_include_usage,
        )

        self.chat_template = chat_template
        self.chat_template_content_format: Final = chat_template_content_format
        self.enable_log_outputs = enable_log_outputs

        self.reasoning_parser: Optional[Callable[[AnyTokenizer],
                                                 ReasoningParser]] = None
        if reasoning_parser:
            try:
                self.reasoning_parser = (
                    ReasoningParserManager.get_reasoning_parser(
                        reasoning_parser))
                assert self.reasoning_parser is not None
            except Exception as e:
                raise TypeError(
                    f"{reasoning_parser=} has not been registered") from e

        self.enable_prompt_tokens_details = enable_prompt_tokens_details
        self.enable_force_include_usage = enable_force_include_usage
        self.default_sampling_params = (
            self.model_config.get_diff_sampling_param())
        if self.default_sampling_params:
            source = self.model_config.generation_config
            source = "model" if source == "auto" else source
            logger.info("Using default chat sampling params from %s: %s",
                        source, self.default_sampling_params)

        # If False (default), the "store" option is (silently) ignored and the
        # response is not stored. If True, the response is stored in memory.
        # NOTE(woosuk): This may not be intuitive for users, as the default
        # behavior in OpenAI's Responses API is to store the response, but
        # vLLM's default behavior is not.
        self.enable_store = envs.VLLM_ENABLE_RESPONSES_API_STORE
        if self.enable_store:
            logger.warning_once(
                "`VLLM_ENABLE_RESPONSES_API_STORE` is enabled. This may "
                "cause a memory leak since we never remove responses from "
                "the store.")

        self.use_harmony = model_config.hf_config.model_type == "gpt_oss"
        if self.use_harmony:
            logger.warning("For gpt-oss, we ignore --enable-auto-tool-choice "
                           "and always enable tool use.")
            # OpenAI models have two EOS-like tokens: <|return|> and <|call|>.
            # We need to add them to the stop token ids.
            if "stop_token_ids" not in self.default_sampling_params:
                self.default_sampling_params["stop_token_ids"] = []
            self.default_sampling_params["stop_token_ids"].extend(
                get_stop_tokens_for_assistant_actions())

        # set up tool use
        self.enable_auto_tools: bool = enable_auto_tools
        if self.enable_auto_tools:
            logger.info(
                "\"auto\" tool choice has been enabled please note that while"
                " the parallel_tool_calls client option is preset for "
                "compatibility reasons, it will be ignored.")

        # HACK(woosuk): This is a hack. We should use a better store.
        # FIXME: If enable_store=True, this may cause a memory leak since we
        # never remove responses from the store.
        self.response_store: dict[str, ResponsesResponse] = {}
        self.response_store_lock = asyncio.Lock()

        # HACK(woosuk): This is a hack. We should use a better store.
        # FIXME: If enable_store=True, this may cause a memory leak since we
        # never remove messages from the store.
        self.msg_store: dict[str, list[ChatCompletionMessageParam]] = {}

        self.background_tasks: dict[str, asyncio.Task] = {}

        self.tool_server = tool_server

    async def create_responses(
        self,
        request: ResponsesRequest,
        raw_request: Optional[Request] = None,
    ) -> Union[AsyncGenerator[str, None], ResponsesResponse, ErrorResponse]:
        error_check_ret = await self._check_model(request)
        if error_check_ret is not None:
            logger.error("Error with model %s", error_check_ret)
            return error_check_ret

        # If the engine is dead, raise the engine's DEAD_ERROR.
        # This is required for the streaming case, where we return a
        # success status before we actually start generating text :).
        if self.engine_client.errored:
            raise self.engine_client.dead_error

        if request.store and not self.enable_store:
            if request.background:
                return self.create_error_response(
                    err_type="invalid_request_error",
                    message=(
                        "This vLLM engine does not support `store=True` and "
                        "therefore does not support the background mode. To "
                        "enable these features, set the environment variable "
                        "`VLLM_ENABLE_RESPONSES_API_STORE=1` when launching "
                        "the vLLM server."),
                    status_code=HTTPStatus.BAD_REQUEST,
                )
            # Disable the store option.
            # NOTE(woosuk): Although returning an error is possible, we opted
            # to implicitly disable store and process the request anyway, as
            # we assume most users do not intend to actually store the response
            # (i.e., their request's `store=True` just because it's the default
            # value).
            request.store = False

        # Handle the previous response ID.
        prev_response_id = request.previous_response_id
        if prev_response_id is not None:
            if not prev_response_id.startswith("resp_"):
                return self._make_invalid_id_error(prev_response_id)
            async with self.response_store_lock:
                prev_response = self.response_store.get(prev_response_id)
            if prev_response is None:
                return self._make_not_found_error(prev_response_id)
        else:
            prev_response = None

        try:
            lora_request = self._maybe_get_adapters(request)
            model_name = self._get_model_name(request.model, lora_request)
            tokenizer = await self.engine_client.get_tokenizer(lora_request)

            if self.use_harmony:
                messages, request_prompts, engine_prompts = (
                    self._make_request_with_harmony(request, prev_response))
            else:
                messages, request_prompts, engine_prompts = (
                    await self._make_request(request, prev_response,
                                             tokenizer))

        except (ValueError, TypeError, RuntimeError, jinja2.TemplateError,
                NotImplementedError) as e:
            logger.exception("Error in preprocessing prompt inputs")
            return self.create_error_response(f"{e} {e.__cause__}")

        request_metadata = RequestResponseMetadata(
            request_id=request.request_id)
        if raw_request:
            raw_request.state.request_metadata = request_metadata

        # Schedule the request and get the result generator.
        generators: list[AsyncGenerator[ConversationContext, None]] = []

        builtin_tool_list: list[str] = []
        if self.use_harmony and self.tool_server is not None:
            if self.tool_server.has_tool("browser"):
                builtin_tool_list.append("browser")
            if self.tool_server.has_tool("python"):
                builtin_tool_list.append("python")
        async with AsyncExitStack() as exit_stack:
            try:
                if self.tool_server is not None:
                    # TODO: initialize tool sessions lazily when the session
                    # is actually used.
                    tool_session_ctxs: dict[str, Any] = {
                        tool_name:
                        exit_stack.enter_async_context(
                            self.tool_server.new_session(tool_name))
                        for tool_name in builtin_tool_list
                    }
                    tool_sessions = {}
                    for tool_name in builtin_tool_list:
                        tool_sessions[tool_name] = (
                            await tool_session_ctxs[tool_name])
                else:
                    assert len(builtin_tool_list) == 0
                    tool_sessions = {}
                for i, engine_prompt in enumerate(engine_prompts):
                    default_max_tokens = self.max_model_len - len(
                        engine_prompt["prompt_token_ids"])
                    sampling_params = request.to_sampling_params(
                        default_max_tokens, self.default_sampling_params)

                    trace_headers = (None if raw_request is None else await
                                     self._get_trace_headers(
                                         raw_request.headers))

                    context: ConversationContext
                    if self.use_harmony:
                        if request.stream:
                            context = StreamingHarmonyContext(
                                messages, tool_sessions)
                        else:
                            context = HarmonyContext(messages, tool_sessions)
                    else:
                        context = SimpleContext()
                    generator = self._generate_with_builtin_tools(
                        request_id=request.request_id,
                        request_prompt=request_prompts[i],
                        engine_prompt=engine_prompt,
                        sampling_params=sampling_params,
                        context=context,
                        lora_request=lora_request,
                        priority=request.priority,
                        trace_headers=trace_headers,
                    )
                    generators.append(generator)
            except ValueError as e:
                # TODO: Use a vllm-specific Validation Error
                return self.create_error_response(str(e))

            assert len(generators) == 1
            result_generator, = generators

            # Store the input messages.
            if request.store:
                self.msg_store[request.request_id] = messages

            if request.background:
                created_time = int(time.time())
                response = ResponsesResponse.from_request(
                    request,
                    sampling_params,
                    model_name=model_name,
                    created_time=created_time,
                    output=[],
                    status="queued",
                    usage=None,
                )
                async with self.response_store_lock:
                    self.response_store[response.id] = response

                # Run the request in the background.
                task = asyncio.create_task(
                    self._run_background_request(
                        request,
                        sampling_params,
                        result_generator,
                        context,
                        model_name,
                        tokenizer,
                        request_metadata,
                        created_time,
                    ),
                    name=f"create_{response.id}",
                )

                # For cleanup.
                response_id = response.id
                self.background_tasks[response_id] = task
                task.add_done_callback(
                    lambda _: self.background_tasks.pop(response_id, None))
                return response

            if request.stream:
                raise NotImplementedError(
                    "Streaming responses are not supported")

            try:
                return await self.responses_full_generator(
                    request,
                    sampling_params,
                    result_generator,
                    context,
                    model_name,
                    tokenizer,
                    request_metadata,
                )
            except Exception as e:
                return self.create_error_response(str(e))
        return self.create_error_response("Should not reach here")

    async def _make_request(
        self,
        request: ResponsesRequest,
        prev_response: Optional[ResponsesResponse],
        tokenizer: AnyTokenizer,
    ):
        if len(request.tools) > 0:
            raise NotImplementedError(
                "Tool use is not supported in Responses API without Harmony")
        # Construct the input messages.
        messages = self._construct_input_messages(request, prev_response)
        _, request_prompts, engine_prompts = await self._preprocess_chat(
            request,
            tokenizer,
            messages,
            chat_template=self.chat_template,
            chat_template_content_format=self.chat_template_content_format,
        )
        return messages, request_prompts, engine_prompts

    def _make_request_with_harmony(
        self,
        request: ResponsesRequest,
        prev_response: Optional[ResponsesResponse],
    ):
        if request.tool_choice != "auto":
            raise NotImplementedError(
                "Only 'auto' tool_choice is supported in "
                "response API with Harmony")
        messages = self._construct_input_messages_with_harmony(
            request, prev_response)
        prompt_token_ids = render_for_completion(messages)
        engine_prompt = EngineTokensPrompt(prompt_token_ids=prompt_token_ids)
        return messages, [prompt_token_ids], [engine_prompt]

    async def responses_full_generator(
        self,
        request: ResponsesRequest,
        sampling_params: SamplingParams,
        result_generator: AsyncIterator[ConversationContext],
        context: ConversationContext,
        model_name: str,
        tokenizer: AnyTokenizer,
        request_metadata: RequestResponseMetadata,
        created_time: Optional[int] = None,
    ) -> Union[ErrorResponse, ResponsesResponse]:
        if created_time is None:
            created_time = int(time.time())

        try:
            async for _ in result_generator:
                pass
        except asyncio.CancelledError:
            return self.create_error_response("Client disconnected")
        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))

        if self.use_harmony:
            assert isinstance(context, HarmonyContext)
            output = self._make_response_output_items_with_harmony(context)
            # TODO: these are all 0 for now!
            num_prompt_tokens = context.num_prompt_tokens
            num_generated_tokens = context.num_output_tokens
            num_cached_tokens = context.num_cached_tokens
            num_reasoning_tokens = context.num_reasoning_tokens
        else:
            assert isinstance(context, SimpleContext)
            final_res = context.last_output
            assert final_res is not None
            assert len(final_res.outputs) == 1
            final_output = final_res.outputs[0]

            output = self._make_response_output_items(request, final_output,
                                                      tokenizer)

            # Calculate usage.
            assert final_res.prompt_token_ids is not None
            num_prompt_tokens = len(final_res.prompt_token_ids)
            num_generated_tokens = len(final_output.token_ids)
            num_cached_tokens = final_res.num_cached_tokens
            num_reasoning_tokens = 0

        usage = ResponseUsage(
            input_tokens=num_prompt_tokens,
            output_tokens=num_generated_tokens,
            total_tokens=num_prompt_tokens + num_generated_tokens,
            input_tokens_details=InputTokensDetails(
                cached_tokens=num_cached_tokens),
            output_tokens_details=OutputTokensDetails(
                reasoning_tokens=num_reasoning_tokens),
        )
        response = ResponsesResponse.from_request(
            request,
            sampling_params,
            model_name=model_name,
            created_time=created_time,
            output=output,
            status="completed",
            usage=usage,
        )

        if request.store:
            async with self.response_store_lock:
                stored_response = self.response_store.get(response.id)
                # If the response is already cancelled, don't update it.
                if (stored_response is None
                        or stored_response.status != "cancelled"):
                    self.response_store[response.id] = response
        return response

    def _make_response_output_items(
        self,
        request: ResponsesRequest,
        final_output: CompletionOutput,
        tokenizer: AnyTokenizer,
    ) -> list[ResponseOutputItem]:
        if self.reasoning_parser:
            try:
                reasoning_parser = self.reasoning_parser(tokenizer)
            except RuntimeError as e:
                logger.exception("Error in reasoning parser creation.")
                raise e

            reasoning_content, content = (
                reasoning_parser.extract_reasoning_content(final_output.text,
                                                           request=request))
        else:
            reasoning_content = None
            content = final_output.text

        # Log complete response if output logging is enabled
        if self.enable_log_outputs and self.request_logger:
            output_text = ""
            if content:
                output_text = content
            elif reasoning_content:
                output_text = f"[reasoning: {reasoning_content}]"

            if output_text:
                self.request_logger.log_outputs(
                    request_id=request.request_id,
                    outputs=output_text,
                    output_token_ids=final_output.token_ids,
                    finish_reason=final_output.finish_reason,
                    is_streaming=False,
                    delta=False,
                )

        output = []
        if reasoning_content:
            reasoning_item = ResponseReasoningItem(
                id=f"rs_{random_uuid()}",
                summary=[],
                type="reasoning",
                content=[
                    ResponseReasoningTextContent(text=reasoning_content,
                                                 type="reasoning_text")
                ],
                status=None,  # NOTE: Only the last output item has status.
            )
            output.append(reasoning_item)
        if content:
            output_text = ResponseOutputText(
                text=content,
                annotations=[],  # TODO
                type="output_text",
                logprobs=None,  # TODO
            )
            message = ResponseOutputMessage(
                id=f"msg_{random_uuid()}",
                content=[output_text],
                role="assistant",
                status="completed",
                type="message",
            )
            output.append(message)
        return output

    def _make_response_output_items_with_harmony(
        self,
        context: HarmonyContext,
    ) -> list[ResponseOutputItem]:
        output_items = []
        num_init_messages = context.num_init_messages
        for msg in context.messages[num_init_messages:]:
            output_items.extend(parse_output_message(msg))
        # Handle the generation stopped in the middle (if any).
        last_items = parse_remaining_state(context.parser)
        if last_items:
            output_items.extend(last_items)
        return output_items

    def _construct_input_messages(
        self,
        request: ResponsesRequest,
        prev_response: Optional[ResponsesResponse] = None,
    ) -> list[ChatCompletionMessageParam]:
        messages: list[ChatCompletionMessageParam] = []
        if request.instructions:
            messages.append({
                "role": "system",
                "content": request.instructions,
            })

        # Prepend the conversation history.
        if prev_response is not None:
            # Add the previous messages.
            prev_msg = self.msg_store[prev_response.id]
            messages.extend(prev_msg)

            # Add the previous output.
            for output_item in prev_response.output:
                # NOTE: We skip the reasoning output.
                if isinstance(output_item, ResponseOutputMessage):
                    for content in output_item.content:
                        messages.append({
                            "role": "assistant",
                            "content": content.text,
                        })

        # Append the new input.
        # Responses API supports simple text inputs without chat format.
        if isinstance(request.input, str):
            messages.append({"role": "user", "content": request.input})
        else:
            messages.extend(request.input)  # type: ignore
        return messages

    def _construct_input_messages_with_harmony(
        self,
        request: ResponsesRequest,
        prev_response: Optional[ResponsesResponse],
    ) -> list[OpenAIHarmonyMessage]:
        messages: list[OpenAIHarmonyMessage] = []
        if prev_response is None:
            # New conversation.
            reasoning_effort = (request.reasoning.effort
                                if request.reasoning else None)
            tool_types = [tool.type for tool in request.tools]
            enable_browser = ("web_search_preview" in tool_types
                              and self.tool_server is not None
                              and self.tool_server.has_tool("browser"))
            enable_code_interpreter = ("code_interpreter" in tool_types
                                       and self.tool_server is not None
                                       and self.tool_server.has_tool("python"))
            sys_msg = get_system_message(
                reasoning_effort=reasoning_effort,
                browser_description=self.tool_server.get_tool_description(
                    "browser")
                if enable_browser and self.tool_server is not None else None,
                python_description=self.tool_server.get_tool_description(
                    "python") if enable_code_interpreter
                and self.tool_server is not None else None,
            )
            messages.append(sys_msg)
            dev_msg = get_developer_message(request.instructions,
                                            request.tools)
            messages.append(dev_msg)
        else:
            # Continue the previous conversation.
            # FIXME(woosuk): Currently, request params like reasoning and
            # instructions are ignored.
            prev_msgs = self.msg_store[prev_response.id]
            # Remove the previous chain-of-thoughts if there is a new "final"
            # message. Note that this also removes these messages from the
            # msg_store.
            if len(prev_msgs) > 0:
                last_msg = prev_msgs[-1]
                assert isinstance(last_msg, OpenAIHarmonyMessage)
                if last_msg.channel == "final":
                    prev_final_msg_idx = -1
                    for i in range(len(prev_msgs) - 2, -1, -1):
                        prev_msg_i = prev_msgs[i]
                        assert isinstance(prev_msg_i, OpenAIHarmonyMessage)
                        if prev_msg_i.channel == "final":
                            prev_final_msg_idx = i
                            break
                    recent_turn_msgs = prev_msgs[prev_final_msg_idx + 1:]
                    del prev_msgs[prev_final_msg_idx + 1:]
                    for msg in recent_turn_msgs:
                        assert isinstance(msg, OpenAIHarmonyMessage)
                        if msg.channel != "analysis":
                            prev_msgs.append(msg)
            messages.extend(prev_msgs)
        # Append the new input.
        # Reponses API supports simple text inputs without chat format.
        if isinstance(request.input, str):
            messages.append(get_user_message(request.input))
        else:
            if prev_response is not None:
                prev_outputs = copy(prev_response.output)
            else:
                prev_outputs = []
            for response_msg in request.input:
                messages.append(
                    parse_response_input(response_msg, prev_outputs))
                # User passes in a a tool call request and its output. We need
                # to add the tool call request to prev_outputs so that the
                # parse_response_input can find the tool call request when
                # parsing the tool call output.
                if isinstance(response_msg, ResponseFunctionToolCall):
                    prev_outputs.append(response_msg)
        return messages

    async def _run_background_request(
        self,
        request: ResponsesRequest,
        *args,
        **kwargs,
    ):
        try:
            response = await self.responses_full_generator(
                request, *args, **kwargs)
        except Exception as e:
            logger.exception("Background request failed for %s",
                             request.request_id)
            response = self.create_error_response(str(e))

        if isinstance(response, ErrorResponse):
            # If the request has failed, update the status to "failed".
            response_id = request.request_id
            async with self.response_store_lock:
                stored_response = self.response_store.get(response_id)
                assert stored_response is not None
                if stored_response.status not in ("completed", "cancelled"):
                    stored_response.status = "failed"

    async def retrieve_responses(
        self,
        response_id: str,
    ) -> Union[ErrorResponse, ResponsesResponse]:
        if not response_id.startswith("resp_"):
            return self._make_invalid_id_error(response_id)

        async with self.response_store_lock:
            response = self.response_store.get(response_id)

        if response is None:
            return self._make_not_found_error(response_id)
        return response

    async def cancel_responses(
        self,
        response_id: str,
    ) -> Union[ErrorResponse, ResponsesResponse]:
        if not response_id.startswith("resp_"):
            return self._make_invalid_id_error(response_id)

        async with self.response_store_lock:
            response = self.response_store.get(response_id)
            if response is None:
                return self._make_not_found_error(response_id)

            prev_status = response.status
            if prev_status not in ("queued", "in_progress"):
                return self.create_error_response(
                    err_type="invalid_request_error",
                    message="Cannot cancel a synchronous response.",
                )

            # Update the status to "cancelled".
            response.status = "cancelled"

        # Abort the request.
        if (task := self.background_tasks.get(response_id)):
            task.cancel()
            try:
                await task
            except asyncio.CancelledError:
                logger.exception("Background task for %s was cancelled",
                                 response_id)
        return response

    def _make_invalid_id_error(self, response_id: str) -> ErrorResponse:
        return self.create_error_response(
            err_type="invalid_request_error",
            message=(f"Invalid 'response_id': '{response_id}'. "
                     "Expected an ID that begins with 'resp'."),
        )

    def _make_not_found_error(self, response_id: str) -> ErrorResponse:
        return self.create_error_response(
            err_type="invalid_request_error",
            message=f"Response with id '{response_id}' not found.",
            status_code=HTTPStatus.NOT_FOUND,
        )

    def _make_store_not_supported_error(self) -> ErrorResponse:
        return self.create_error_response(
            err_type="invalid_request_error",
            message=("`store=True` (default) is not supported. Please set "
                     "`store=False` in Responses API or set "
                     "`VLLM_ENABLE_RESPONSES_API_STORE=1` in the env var when "
                     "starting the vLLM server."),
            status_code=HTTPStatus.BAD_REQUEST,
        )

background_tasks instance-attribute

background_tasks: dict[str, Task] = {}

chat_template instance-attribute

chat_template = chat_template

chat_template_content_format instance-attribute

chat_template_content_format: Final = (
    chat_template_content_format
)

default_sampling_params instance-attribute

default_sampling_params = get_diff_sampling_param()

enable_auto_tools instance-attribute

enable_auto_tools: bool = enable_auto_tools

enable_force_include_usage instance-attribute

enable_force_include_usage = enable_force_include_usage

enable_log_outputs instance-attribute

enable_log_outputs = enable_log_outputs

enable_prompt_tokens_details instance-attribute

enable_prompt_tokens_details = enable_prompt_tokens_details

enable_store instance-attribute

msg_store instance-attribute

reasoning_parser instance-attribute

reasoning_parser: Optional[
    Callable[[AnyTokenizer], ReasoningParser]
] = get_reasoning_parser(reasoning_parser)

response_store instance-attribute

response_store: dict[str, ResponsesResponse] = {}

response_store_lock instance-attribute

response_store_lock = Lock()

tool_server instance-attribute

tool_server = tool_server

use_harmony instance-attribute

use_harmony = model_type == 'gpt_oss'

__init__

__init__(
    engine_client: EngineClient,
    model_config: ModelConfig,
    models: OpenAIServingModels,
    *,
    request_logger: Optional[RequestLogger],
    chat_template: Optional[str],
    chat_template_content_format: ChatTemplateContentFormatOption,
    return_tokens_as_token_ids: bool = False,
    reasoning_parser: str = "",
    enable_auto_tools: bool = False,
    tool_parser: Optional[str] = None,
    tool_server: Optional[ToolServer] = None,
    enable_prompt_tokens_details: bool = False,
    enable_force_include_usage: bool = False,
    enable_log_outputs: bool = False,
) -> None
Source code in vllm/entrypoints/openai/serving_responses.py
def __init__(
    self,
    engine_client: EngineClient,
    model_config: ModelConfig,
    models: OpenAIServingModels,
    *,
    request_logger: Optional[RequestLogger],
    chat_template: Optional[str],
    chat_template_content_format: ChatTemplateContentFormatOption,
    return_tokens_as_token_ids: bool = False,
    reasoning_parser: str = "",
    enable_auto_tools: bool = False,
    tool_parser: Optional[str] = None,
    tool_server: Optional[ToolServer] = None,
    enable_prompt_tokens_details: bool = False,
    enable_force_include_usage: bool = False,
    enable_log_outputs: bool = False,
) -> None:
    super().__init__(
        engine_client=engine_client,
        model_config=model_config,
        models=models,
        request_logger=request_logger,
        return_tokens_as_token_ids=return_tokens_as_token_ids,
        enable_force_include_usage=enable_force_include_usage,
    )

    self.chat_template = chat_template
    self.chat_template_content_format: Final = chat_template_content_format
    self.enable_log_outputs = enable_log_outputs

    self.reasoning_parser: Optional[Callable[[AnyTokenizer],
                                             ReasoningParser]] = None
    if reasoning_parser:
        try:
            self.reasoning_parser = (
                ReasoningParserManager.get_reasoning_parser(
                    reasoning_parser))
            assert self.reasoning_parser is not None
        except Exception as e:
            raise TypeError(
                f"{reasoning_parser=} has not been registered") from e

    self.enable_prompt_tokens_details = enable_prompt_tokens_details
    self.enable_force_include_usage = enable_force_include_usage
    self.default_sampling_params = (
        self.model_config.get_diff_sampling_param())
    if self.default_sampling_params:
        source = self.model_config.generation_config
        source = "model" if source == "auto" else source
        logger.info("Using default chat sampling params from %s: %s",
                    source, self.default_sampling_params)

    # If False (default), the "store" option is (silently) ignored and the
    # response is not stored. If True, the response is stored in memory.
    # NOTE(woosuk): This may not be intuitive for users, as the default
    # behavior in OpenAI's Responses API is to store the response, but
    # vLLM's default behavior is not.
    self.enable_store = envs.VLLM_ENABLE_RESPONSES_API_STORE
    if self.enable_store:
        logger.warning_once(
            "`VLLM_ENABLE_RESPONSES_API_STORE` is enabled. This may "
            "cause a memory leak since we never remove responses from "
            "the store.")

    self.use_harmony = model_config.hf_config.model_type == "gpt_oss"
    if self.use_harmony:
        logger.warning("For gpt-oss, we ignore --enable-auto-tool-choice "
                       "and always enable tool use.")
        # OpenAI models have two EOS-like tokens: <|return|> and <|call|>.
        # We need to add them to the stop token ids.
        if "stop_token_ids" not in self.default_sampling_params:
            self.default_sampling_params["stop_token_ids"] = []
        self.default_sampling_params["stop_token_ids"].extend(
            get_stop_tokens_for_assistant_actions())

    # set up tool use
    self.enable_auto_tools: bool = enable_auto_tools
    if self.enable_auto_tools:
        logger.info(
            "\"auto\" tool choice has been enabled please note that while"
            " the parallel_tool_calls client option is preset for "
            "compatibility reasons, it will be ignored.")

    # HACK(woosuk): This is a hack. We should use a better store.
    # FIXME: If enable_store=True, this may cause a memory leak since we
    # never remove responses from the store.
    self.response_store: dict[str, ResponsesResponse] = {}
    self.response_store_lock = asyncio.Lock()

    # HACK(woosuk): This is a hack. We should use a better store.
    # FIXME: If enable_store=True, this may cause a memory leak since we
    # never remove messages from the store.
    self.msg_store: dict[str, list[ChatCompletionMessageParam]] = {}

    self.background_tasks: dict[str, asyncio.Task] = {}

    self.tool_server = tool_server

_construct_input_messages

_construct_input_messages(
    request: ResponsesRequest,
    prev_response: Optional[ResponsesResponse] = None,
) -> list[ChatCompletionMessageParam]
Source code in vllm/entrypoints/openai/serving_responses.py
def _construct_input_messages(
    self,
    request: ResponsesRequest,
    prev_response: Optional[ResponsesResponse] = None,
) -> list[ChatCompletionMessageParam]:
    messages: list[ChatCompletionMessageParam] = []
    if request.instructions:
        messages.append({
            "role": "system",
            "content": request.instructions,
        })

    # Prepend the conversation history.
    if prev_response is not None:
        # Add the previous messages.
        prev_msg = self.msg_store[prev_response.id]
        messages.extend(prev_msg)

        # Add the previous output.
        for output_item in prev_response.output:
            # NOTE: We skip the reasoning output.
            if isinstance(output_item, ResponseOutputMessage):
                for content in output_item.content:
                    messages.append({
                        "role": "assistant",
                        "content": content.text,
                    })

    # Append the new input.
    # Responses API supports simple text inputs without chat format.
    if isinstance(request.input, str):
        messages.append({"role": "user", "content": request.input})
    else:
        messages.extend(request.input)  # type: ignore
    return messages

_construct_input_messages_with_harmony

_construct_input_messages_with_harmony(
    request: ResponsesRequest,
    prev_response: Optional[ResponsesResponse],
) -> list[Message]
Source code in vllm/entrypoints/openai/serving_responses.py
def _construct_input_messages_with_harmony(
    self,
    request: ResponsesRequest,
    prev_response: Optional[ResponsesResponse],
) -> list[OpenAIHarmonyMessage]:
    messages: list[OpenAIHarmonyMessage] = []
    if prev_response is None:
        # New conversation.
        reasoning_effort = (request.reasoning.effort
                            if request.reasoning else None)
        tool_types = [tool.type for tool in request.tools]
        enable_browser = ("web_search_preview" in tool_types
                          and self.tool_server is not None
                          and self.tool_server.has_tool("browser"))
        enable_code_interpreter = ("code_interpreter" in tool_types
                                   and self.tool_server is not None
                                   and self.tool_server.has_tool("python"))
        sys_msg = get_system_message(
            reasoning_effort=reasoning_effort,
            browser_description=self.tool_server.get_tool_description(
                "browser")
            if enable_browser and self.tool_server is not None else None,
            python_description=self.tool_server.get_tool_description(
                "python") if enable_code_interpreter
            and self.tool_server is not None else None,
        )
        messages.append(sys_msg)
        dev_msg = get_developer_message(request.instructions,
                                        request.tools)
        messages.append(dev_msg)
    else:
        # Continue the previous conversation.
        # FIXME(woosuk): Currently, request params like reasoning and
        # instructions are ignored.
        prev_msgs = self.msg_store[prev_response.id]
        # Remove the previous chain-of-thoughts if there is a new "final"
        # message. Note that this also removes these messages from the
        # msg_store.
        if len(prev_msgs) > 0:
            last_msg = prev_msgs[-1]
            assert isinstance(last_msg, OpenAIHarmonyMessage)
            if last_msg.channel == "final":
                prev_final_msg_idx = -1
                for i in range(len(prev_msgs) - 2, -1, -1):
                    prev_msg_i = prev_msgs[i]
                    assert isinstance(prev_msg_i, OpenAIHarmonyMessage)
                    if prev_msg_i.channel == "final":
                        prev_final_msg_idx = i
                        break
                recent_turn_msgs = prev_msgs[prev_final_msg_idx + 1:]
                del prev_msgs[prev_final_msg_idx + 1:]
                for msg in recent_turn_msgs:
                    assert isinstance(msg, OpenAIHarmonyMessage)
                    if msg.channel != "analysis":
                        prev_msgs.append(msg)
        messages.extend(prev_msgs)
    # Append the new input.
    # Reponses API supports simple text inputs without chat format.
    if isinstance(request.input, str):
        messages.append(get_user_message(request.input))
    else:
        if prev_response is not None:
            prev_outputs = copy(prev_response.output)
        else:
            prev_outputs = []
        for response_msg in request.input:
            messages.append(
                parse_response_input(response_msg, prev_outputs))
            # User passes in a a tool call request and its output. We need
            # to add the tool call request to prev_outputs so that the
            # parse_response_input can find the tool call request when
            # parsing the tool call output.
            if isinstance(response_msg, ResponseFunctionToolCall):
                prev_outputs.append(response_msg)
    return messages

_make_invalid_id_error

_make_invalid_id_error(response_id: str) -> ErrorResponse
Source code in vllm/entrypoints/openai/serving_responses.py
def _make_invalid_id_error(self, response_id: str) -> ErrorResponse:
    return self.create_error_response(
        err_type="invalid_request_error",
        message=(f"Invalid 'response_id': '{response_id}'. "
                 "Expected an ID that begins with 'resp'."),
    )

_make_not_found_error

_make_not_found_error(response_id: str) -> ErrorResponse
Source code in vllm/entrypoints/openai/serving_responses.py
def _make_not_found_error(self, response_id: str) -> ErrorResponse:
    return self.create_error_response(
        err_type="invalid_request_error",
        message=f"Response with id '{response_id}' not found.",
        status_code=HTTPStatus.NOT_FOUND,
    )

_make_request async

_make_request(
    request: ResponsesRequest,
    prev_response: Optional[ResponsesResponse],
    tokenizer: AnyTokenizer,
)
Source code in vllm/entrypoints/openai/serving_responses.py
async def _make_request(
    self,
    request: ResponsesRequest,
    prev_response: Optional[ResponsesResponse],
    tokenizer: AnyTokenizer,
):
    if len(request.tools) > 0:
        raise NotImplementedError(
            "Tool use is not supported in Responses API without Harmony")
    # Construct the input messages.
    messages = self._construct_input_messages(request, prev_response)
    _, request_prompts, engine_prompts = await self._preprocess_chat(
        request,
        tokenizer,
        messages,
        chat_template=self.chat_template,
        chat_template_content_format=self.chat_template_content_format,
    )
    return messages, request_prompts, engine_prompts

_make_request_with_harmony

_make_request_with_harmony(
    request: ResponsesRequest,
    prev_response: Optional[ResponsesResponse],
)
Source code in vllm/entrypoints/openai/serving_responses.py
def _make_request_with_harmony(
    self,
    request: ResponsesRequest,
    prev_response: Optional[ResponsesResponse],
):
    if request.tool_choice != "auto":
        raise NotImplementedError(
            "Only 'auto' tool_choice is supported in "
            "response API with Harmony")
    messages = self._construct_input_messages_with_harmony(
        request, prev_response)
    prompt_token_ids = render_for_completion(messages)
    engine_prompt = EngineTokensPrompt(prompt_token_ids=prompt_token_ids)
    return messages, [prompt_token_ids], [engine_prompt]

_make_response_output_items

_make_response_output_items(
    request: ResponsesRequest,
    final_output: CompletionOutput,
    tokenizer: AnyTokenizer,
) -> list[ResponseOutputItem]
Source code in vllm/entrypoints/openai/serving_responses.py
def _make_response_output_items(
    self,
    request: ResponsesRequest,
    final_output: CompletionOutput,
    tokenizer: AnyTokenizer,
) -> list[ResponseOutputItem]:
    if self.reasoning_parser:
        try:
            reasoning_parser = self.reasoning_parser(tokenizer)
        except RuntimeError as e:
            logger.exception("Error in reasoning parser creation.")
            raise e

        reasoning_content, content = (
            reasoning_parser.extract_reasoning_content(final_output.text,
                                                       request=request))
    else:
        reasoning_content = None
        content = final_output.text

    # Log complete response if output logging is enabled
    if self.enable_log_outputs and self.request_logger:
        output_text = ""
        if content:
            output_text = content
        elif reasoning_content:
            output_text = f"[reasoning: {reasoning_content}]"

        if output_text:
            self.request_logger.log_outputs(
                request_id=request.request_id,
                outputs=output_text,
                output_token_ids=final_output.token_ids,
                finish_reason=final_output.finish_reason,
                is_streaming=False,
                delta=False,
            )

    output = []
    if reasoning_content:
        reasoning_item = ResponseReasoningItem(
            id=f"rs_{random_uuid()}",
            summary=[],
            type="reasoning",
            content=[
                ResponseReasoningTextContent(text=reasoning_content,
                                             type="reasoning_text")
            ],
            status=None,  # NOTE: Only the last output item has status.
        )
        output.append(reasoning_item)
    if content:
        output_text = ResponseOutputText(
            text=content,
            annotations=[],  # TODO
            type="output_text",
            logprobs=None,  # TODO
        )
        message = ResponseOutputMessage(
            id=f"msg_{random_uuid()}",
            content=[output_text],
            role="assistant",
            status="completed",
            type="message",
        )
        output.append(message)
    return output

_make_response_output_items_with_harmony

_make_response_output_items_with_harmony(
    context: HarmonyContext,
) -> list[ResponseOutputItem]
Source code in vllm/entrypoints/openai/serving_responses.py
def _make_response_output_items_with_harmony(
    self,
    context: HarmonyContext,
) -> list[ResponseOutputItem]:
    output_items = []
    num_init_messages = context.num_init_messages
    for msg in context.messages[num_init_messages:]:
        output_items.extend(parse_output_message(msg))
    # Handle the generation stopped in the middle (if any).
    last_items = parse_remaining_state(context.parser)
    if last_items:
        output_items.extend(last_items)
    return output_items

_make_store_not_supported_error

_make_store_not_supported_error() -> ErrorResponse
Source code in vllm/entrypoints/openai/serving_responses.py
def _make_store_not_supported_error(self) -> ErrorResponse:
    return self.create_error_response(
        err_type="invalid_request_error",
        message=("`store=True` (default) is not supported. Please set "
                 "`store=False` in Responses API or set "
                 "`VLLM_ENABLE_RESPONSES_API_STORE=1` in the env var when "
                 "starting the vLLM server."),
        status_code=HTTPStatus.BAD_REQUEST,
    )

_run_background_request async

_run_background_request(
    request: ResponsesRequest, *args, **kwargs
)
Source code in vllm/entrypoints/openai/serving_responses.py
async def _run_background_request(
    self,
    request: ResponsesRequest,
    *args,
    **kwargs,
):
    try:
        response = await self.responses_full_generator(
            request, *args, **kwargs)
    except Exception as e:
        logger.exception("Background request failed for %s",
                         request.request_id)
        response = self.create_error_response(str(e))

    if isinstance(response, ErrorResponse):
        # If the request has failed, update the status to "failed".
        response_id = request.request_id
        async with self.response_store_lock:
            stored_response = self.response_store.get(response_id)
            assert stored_response is not None
            if stored_response.status not in ("completed", "cancelled"):
                stored_response.status = "failed"

cancel_responses async

cancel_responses(
    response_id: str,
) -> Union[ErrorResponse, ResponsesResponse]
Source code in vllm/entrypoints/openai/serving_responses.py
async def cancel_responses(
    self,
    response_id: str,
) -> Union[ErrorResponse, ResponsesResponse]:
    if not response_id.startswith("resp_"):
        return self._make_invalid_id_error(response_id)

    async with self.response_store_lock:
        response = self.response_store.get(response_id)
        if response is None:
            return self._make_not_found_error(response_id)

        prev_status = response.status
        if prev_status not in ("queued", "in_progress"):
            return self.create_error_response(
                err_type="invalid_request_error",
                message="Cannot cancel a synchronous response.",
            )

        # Update the status to "cancelled".
        response.status = "cancelled"

    # Abort the request.
    if (task := self.background_tasks.get(response_id)):
        task.cancel()
        try:
            await task
        except asyncio.CancelledError:
            logger.exception("Background task for %s was cancelled",
                             response_id)
    return response

create_responses async

create_responses(
    request: ResponsesRequest,
    raw_request: Optional[Request] = None,
) -> Union[
    AsyncGenerator[str, None],
    ResponsesResponse,
    ErrorResponse,
]
Source code in vllm/entrypoints/openai/serving_responses.py
async def create_responses(
    self,
    request: ResponsesRequest,
    raw_request: Optional[Request] = None,
) -> Union[AsyncGenerator[str, None], ResponsesResponse, ErrorResponse]:
    error_check_ret = await self._check_model(request)
    if error_check_ret is not None:
        logger.error("Error with model %s", error_check_ret)
        return error_check_ret

    # If the engine is dead, raise the engine's DEAD_ERROR.
    # This is required for the streaming case, where we return a
    # success status before we actually start generating text :).
    if self.engine_client.errored:
        raise self.engine_client.dead_error

    if request.store and not self.enable_store:
        if request.background:
            return self.create_error_response(
                err_type="invalid_request_error",
                message=(
                    "This vLLM engine does not support `store=True` and "
                    "therefore does not support the background mode. To "
                    "enable these features, set the environment variable "
                    "`VLLM_ENABLE_RESPONSES_API_STORE=1` when launching "
                    "the vLLM server."),
                status_code=HTTPStatus.BAD_REQUEST,
            )
        # Disable the store option.
        # NOTE(woosuk): Although returning an error is possible, we opted
        # to implicitly disable store and process the request anyway, as
        # we assume most users do not intend to actually store the response
        # (i.e., their request's `store=True` just because it's the default
        # value).
        request.store = False

    # Handle the previous response ID.
    prev_response_id = request.previous_response_id
    if prev_response_id is not None:
        if not prev_response_id.startswith("resp_"):
            return self._make_invalid_id_error(prev_response_id)
        async with self.response_store_lock:
            prev_response = self.response_store.get(prev_response_id)
        if prev_response is None:
            return self._make_not_found_error(prev_response_id)
    else:
        prev_response = None

    try:
        lora_request = self._maybe_get_adapters(request)
        model_name = self._get_model_name(request.model, lora_request)
        tokenizer = await self.engine_client.get_tokenizer(lora_request)

        if self.use_harmony:
            messages, request_prompts, engine_prompts = (
                self._make_request_with_harmony(request, prev_response))
        else:
            messages, request_prompts, engine_prompts = (
                await self._make_request(request, prev_response,
                                         tokenizer))

    except (ValueError, TypeError, RuntimeError, jinja2.TemplateError,
            NotImplementedError) as e:
        logger.exception("Error in preprocessing prompt inputs")
        return self.create_error_response(f"{e} {e.__cause__}")

    request_metadata = RequestResponseMetadata(
        request_id=request.request_id)
    if raw_request:
        raw_request.state.request_metadata = request_metadata

    # Schedule the request and get the result generator.
    generators: list[AsyncGenerator[ConversationContext, None]] = []

    builtin_tool_list: list[str] = []
    if self.use_harmony and self.tool_server is not None:
        if self.tool_server.has_tool("browser"):
            builtin_tool_list.append("browser")
        if self.tool_server.has_tool("python"):
            builtin_tool_list.append("python")
    async with AsyncExitStack() as exit_stack:
        try:
            if self.tool_server is not None:
                # TODO: initialize tool sessions lazily when the session
                # is actually used.
                tool_session_ctxs: dict[str, Any] = {
                    tool_name:
                    exit_stack.enter_async_context(
                        self.tool_server.new_session(tool_name))
                    for tool_name in builtin_tool_list
                }
                tool_sessions = {}
                for tool_name in builtin_tool_list:
                    tool_sessions[tool_name] = (
                        await tool_session_ctxs[tool_name])
            else:
                assert len(builtin_tool_list) == 0
                tool_sessions = {}
            for i, engine_prompt in enumerate(engine_prompts):
                default_max_tokens = self.max_model_len - len(
                    engine_prompt["prompt_token_ids"])
                sampling_params = request.to_sampling_params(
                    default_max_tokens, self.default_sampling_params)

                trace_headers = (None if raw_request is None else await
                                 self._get_trace_headers(
                                     raw_request.headers))

                context: ConversationContext
                if self.use_harmony:
                    if request.stream:
                        context = StreamingHarmonyContext(
                            messages, tool_sessions)
                    else:
                        context = HarmonyContext(messages, tool_sessions)
                else:
                    context = SimpleContext()
                generator = self._generate_with_builtin_tools(
                    request_id=request.request_id,
                    request_prompt=request_prompts[i],
                    engine_prompt=engine_prompt,
                    sampling_params=sampling_params,
                    context=context,
                    lora_request=lora_request,
                    priority=request.priority,
                    trace_headers=trace_headers,
                )
                generators.append(generator)
        except ValueError as e:
            # TODO: Use a vllm-specific Validation Error
            return self.create_error_response(str(e))

        assert len(generators) == 1
        result_generator, = generators

        # Store the input messages.
        if request.store:
            self.msg_store[request.request_id] = messages

        if request.background:
            created_time = int(time.time())
            response = ResponsesResponse.from_request(
                request,
                sampling_params,
                model_name=model_name,
                created_time=created_time,
                output=[],
                status="queued",
                usage=None,
            )
            async with self.response_store_lock:
                self.response_store[response.id] = response

            # Run the request in the background.
            task = asyncio.create_task(
                self._run_background_request(
                    request,
                    sampling_params,
                    result_generator,
                    context,
                    model_name,
                    tokenizer,
                    request_metadata,
                    created_time,
                ),
                name=f"create_{response.id}",
            )

            # For cleanup.
            response_id = response.id
            self.background_tasks[response_id] = task
            task.add_done_callback(
                lambda _: self.background_tasks.pop(response_id, None))
            return response

        if request.stream:
            raise NotImplementedError(
                "Streaming responses are not supported")

        try:
            return await self.responses_full_generator(
                request,
                sampling_params,
                result_generator,
                context,
                model_name,
                tokenizer,
                request_metadata,
            )
        except Exception as e:
            return self.create_error_response(str(e))
    return self.create_error_response("Should not reach here")

responses_full_generator async

responses_full_generator(
    request: ResponsesRequest,
    sampling_params: SamplingParams,
    result_generator: AsyncIterator[ConversationContext],
    context: ConversationContext,
    model_name: str,
    tokenizer: AnyTokenizer,
    request_metadata: RequestResponseMetadata,
    created_time: Optional[int] = None,
) -> Union[ErrorResponse, ResponsesResponse]
Source code in vllm/entrypoints/openai/serving_responses.py
async def responses_full_generator(
    self,
    request: ResponsesRequest,
    sampling_params: SamplingParams,
    result_generator: AsyncIterator[ConversationContext],
    context: ConversationContext,
    model_name: str,
    tokenizer: AnyTokenizer,
    request_metadata: RequestResponseMetadata,
    created_time: Optional[int] = None,
) -> Union[ErrorResponse, ResponsesResponse]:
    if created_time is None:
        created_time = int(time.time())

    try:
        async for _ in result_generator:
            pass
    except asyncio.CancelledError:
        return self.create_error_response("Client disconnected")
    except ValueError as e:
        # TODO: Use a vllm-specific Validation Error
        return self.create_error_response(str(e))

    if self.use_harmony:
        assert isinstance(context, HarmonyContext)
        output = self._make_response_output_items_with_harmony(context)
        # TODO: these are all 0 for now!
        num_prompt_tokens = context.num_prompt_tokens
        num_generated_tokens = context.num_output_tokens
        num_cached_tokens = context.num_cached_tokens
        num_reasoning_tokens = context.num_reasoning_tokens
    else:
        assert isinstance(context, SimpleContext)
        final_res = context.last_output
        assert final_res is not None
        assert len(final_res.outputs) == 1
        final_output = final_res.outputs[0]

        output = self._make_response_output_items(request, final_output,
                                                  tokenizer)

        # Calculate usage.
        assert final_res.prompt_token_ids is not None
        num_prompt_tokens = len(final_res.prompt_token_ids)
        num_generated_tokens = len(final_output.token_ids)
        num_cached_tokens = final_res.num_cached_tokens
        num_reasoning_tokens = 0

    usage = ResponseUsage(
        input_tokens=num_prompt_tokens,
        output_tokens=num_generated_tokens,
        total_tokens=num_prompt_tokens + num_generated_tokens,
        input_tokens_details=InputTokensDetails(
            cached_tokens=num_cached_tokens),
        output_tokens_details=OutputTokensDetails(
            reasoning_tokens=num_reasoning_tokens),
    )
    response = ResponsesResponse.from_request(
        request,
        sampling_params,
        model_name=model_name,
        created_time=created_time,
        output=output,
        status="completed",
        usage=usage,
    )

    if request.store:
        async with self.response_store_lock:
            stored_response = self.response_store.get(response.id)
            # If the response is already cancelled, don't update it.
            if (stored_response is None
                    or stored_response.status != "cancelled"):
                self.response_store[response.id] = response
    return response

retrieve_responses async

retrieve_responses(
    response_id: str,
) -> Union[ErrorResponse, ResponsesResponse]
Source code in vllm/entrypoints/openai/serving_responses.py
async def retrieve_responses(
    self,
    response_id: str,
) -> Union[ErrorResponse, ResponsesResponse]:
    if not response_id.startswith("resp_"):
        return self._make_invalid_id_error(response_id)

    async with self.response_store_lock:
        response = self.response_store.get(response_id)

    if response is None:
        return self._make_not_found_error(response_id)
    return response